

Promoting profitable, sustainable and competitive businesses.

Features of Energy Efficient Buildings and Relevance to GHG Emission

Webinar: 2 September 2016

CII

Emissions

Perception :

Perspective :

Emissions are bad

All Emissions are not Bad

All Emissions are Not Bad

In nature, emissions is like breathing

> Humans take almost 7-10 Kg of air / day

Tree example

- > Gives out oxygen
- > Still grows in abundance
- * Question is :

> How much can we emit?

How Much Did we Emit ?

- About 30 Billion tons of CO₂
 released into atmosphere
 every year*
- * **1970**s
 - > How much oil is left?
- * 2000s
 - > Whatever is left, can we burn?

* Source : 'The Ecology of Commerce' by Paul Hawken

ndian Green Building Counci Greening India since 2001

Why are we scared of GHG emission ?

- Coal is the predominant source of power production
 - 55-60% of total power production
 - 556 Million tones of coal consumption/ year
 - **GHG India : 1850 Million tonnes**
- How much emission ?
- Can we continue it ?
- Can we tolerate ?
 - heat waves

GHG

Energy

ndian Green Building Counci

- increase in global temperature
- climate change Environment

0.6 **Global Temperatures** Temperature Anomaly (°C) 0.4 Annual Average **Five Year Average** 02 -0.2 -0. 1880 1920 1940 1960 1980 2000 1900

*Exploring the environment, NASA http://ete.cet.edu/gcc/?/resourcecenter/slideshow/3/1

Reduction in 1 kWh is equal to 3 kWh savings in generation

Energy is one of the major inputs for the Industrial Output & Economic Growth of any country

Features of

Energy Efficient Buildings

& GHG Emission

Building sector in India

- Building consumes 40 % of the total energy
- Contributes 35 % GHG emission
- Expected growth in building stock
 - Five fold increase from 21 billion sft in 2005
 104 billion sft in 2030

Significant potential for improving energy efficiency in buildings

India plan to reduce emission intensity
 > 33-35% by 2030 from 2005 level

Type of buildings ?

- Residential buildings
 - Residential society / Multi-dewelling / Individual home
- Commercial buildings
 - Office/IT / ITES / Hospital / Hotel / Data Center
- Industrial building
 - Mfg industries, process load is involved

What is common in all building types ?

- 1. Building envelope (Wall, roof and glass)
- 2. Lighting
- 3. HVAC
- 4. Equipment

How to measure energy efficiency in buildings ?

- Energy Performance Index (EPI)
 - kWh/ sq m / year
- Whole building simulation approach
 - Energy cost/ energy consumption shall be lesser in Proposed case than the Base case
- Chiller / Cooling
 - kW/TR or Cool SFT/TR or Cool CFM/TR
- Lighting
 - Efficacy (lumen/W)

H	Climatic Zone	Average Annual hourly EPI AAhEPI (Wh/hr/sg m)	Star Rating
	or	52 - 46	1 Star
 		46 - 40	2 Star
Br.,	COMPOSITE	40 - 34	3 Star
		34 - 28	4 Star
-	BEE start r	atin Bo low 28	5 Star

Annexur
oned Built-up Area

EPI (kwh/sqm/year)	Star Label
80-70	1 Star
70-60	2 Star
60-50	3 Star
50-40	4 Star
start rating	5 Star

Energy Efficiency Measures

Envelope:

- Orientation
- Roof insulation
- High SRI coating
- Wall insulation
- Efficient glazing (lower SHGC)
- Sun film for glazing in the identified

Lighting:

- Install/ retrofitting lighting with LED
- Occupancy sensor
- Daylight sensor
- Voltage stabilizer
- Switching off idle running transformers
- Optimize the load on transformer

Operation of air-conditioners:

Adaptive thermostat conditions Improved air movement in the conditioned area © Confe

HVAC:

- Selection of energy efficient chillers (<0.55 kW/TR)
- Efficient Motor, Fan and Pumps
- Use of IE2-IE3 motors
- Optimize the loading of chillers
- Adiabatic cooling for air cooled condenser
- Thermostatic expansion valves-EEV
- Installation of online condenser cleaning system
- VFDs pumps and AHU fans
- Installation VFD cooling tower
- Avoid flow through idle running chillers
- Use of stand cooling towers
- Integration with geothermal based water condensers

Equipment:

• Use of star rated appliances

Tools: Energy Efficiency in Buildings

Energy Efficiency in Buildings

Base case and Proposed case simulation model

© Confederation of Indian Industry

Indian Green Building Council Greening India since 2001

Calibration : Existing buildings

Calibration of simulation model

- As per protocols of IPMVP, FEMP, ASHRAE 14P
- Building level
- Component / equipment level

Energy Efficiency Measures and benefits

Energy savings : parametric analysis

0.82 kg of CO2 per kWh Twice as much as that of the EU

Lighting Energy Efficiency

Retrofitting of existing fixtures by LED fixtures

	LPD (W/ft ²)
Base case	1.04
Proposed case	0.49

Existing Lighting Fixtures

- 72 W/ fixture
- Efficacy : 60
- No of fixtures : 211

Proposed Lighting Fixtures

- 38 W/ fixture
- Efficacy : 132
- No of Fixtures : <100

© Confederation of Indian Industry

ndian Green Building Council Greening India since 2001

Retrofitting : Lighting Energy Efficiency

- Lighting energy saving : 52 %
- ✤ Cooling energy saving : 4 %
- Cost of fixtures : 5 lacs
- Payback : 3-4 years

Operational cost saving : Rs. 1.5 lacs/ annum

Lighting contour

Wing A *Maximum lux : 617 *Minimum lux : 34.6 *Mean lux : 270

Overall mean 262 Wing B *Maximum lux :601 *Minimum lux : 33.4 *Mean lux : 255

Optimise : No. of Lighting fixtures

Installed lighting fixtures

- Installed fixtures : 36 of 74 W
- Lighting load : 2,664 W

Recommended lighting fixtures

- No. of fixtures : 24 of 40 W
- Lighting load : 960 W
- Savings : 1704 W
- Reduction in lighting consumption
 - > 63 %
- Annual savings
 - > 1363 KWh (operation 8 hrs x100 days)
 - GHG reduction : 1172 kg CO2

ndian Green Building Council

What needs to be done ?

- Intellectual decision in selecting Energy Conservation Measure (ECM)
 - LCA analysis
- Adoption of IGBC Green building rating system
 - Reduction in energy, water & resources
 - □ Thereby reduction in GHG emission
- Building energy simulation
 - Simulation for new buildings
 - Calibrated simulation for existing buildings
 - □ Enable better predictions of energy efficiency measures
 - Help in strategic decisions
 - □ Energy & GHG reduction
 - > Approach towards net zero energy/ carbon buildings
 - **Renewable energy integration**

Significant potential in existing building stock

Energy Efficiency and Environmental Benefits

Environmental Benefit Category	Benefits / Million Sq ft

CO ₂ reduction	12,000 Tons
Energy savings	15,000 MWh
Water savings	45,000 KL
Construction waste diverted from landfills	450 Tons

Hospital Dehradun IGBC Gold

GNRC Hospital Guwahati IGBC Gold

Go Green....

Dr. Shivraj Dhaka Counsellor | ECBC Master Trainer

Indian Green Building Council (IGBC) CII Sohrabji Godrej Green Business Centre Survey No 64, HITEC City, Hyderabad 500 084, India Ph: +91 40 4418 5111, Ext. 211; Mob:+91-91775 77288 website: ww.igbc.in Email shivraj.dhaka@cii.in

