

Features of Energy Efficient Buildings and Relevance to GHG Emission

Webinar: 2 September 2016

Emissions

Perception:

Perspective:

Emissions are bad

All Emissions are not Bad

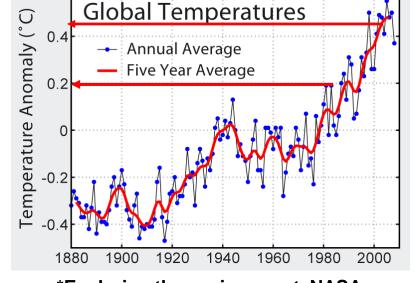
All Emissions are Not Bad

- In nature, emissions is like breathing
 - Humans take almost7-10 Kg of air / day

- Gives out oxygen
- > Still grows in abundance
- Question is:
 - > How much can we emit?

How Much Did we Emit?

- About 30 Billion tons of CO₂
 released into atmosphere
 every year*
- ❖ 1970s
 - How much oil is left?
- *** 2000s**
 - Whatever is left, can we burn?



Source :'The Ecology of Commerce' by Paul Hawken

Why are we scared of GHG emission?

- Coal is the predominant source of power production
 - 55-60% of total power production
 - 556 Million tones of coal consumption/ year
 - > GHG India: 1850 Million tonnes
- How much emission ?
- Can we continue it?
- Can we tolerate?
 - heat waves
 - increase in global temperature
 - > climate change

Environment

*Exploring the environment, NASA http://ete.cet.edu/gcc/?/resourcecenter/slideshow/3/1

Reduction in 1 kWh is equal to 3 kWh savings in generation

Energy GHG

Energy is one of the major inputs for the Industrial Output & Economic Growth of any country

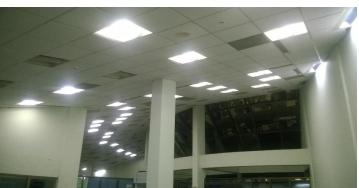
Features of Energy Efficient Buildings & GHG Emission

Building sector in India

- Building consumes 40 % of the total energy
- Contributes 35 % GHG emission
- Expected growth in building stock
 - > Five fold increase from 21 billion sft in 2005
 - **□** 104 billion sft in 2030

Significant potential for improving energy efficiency in buildings

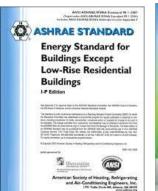
- India plan to reduce emission intensity
 - > 33-35% by 2030 from 2005 level

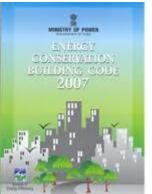

Type of buildings?

- Residential buildings
 - Residential society / Multi-dewelling /Individual home
- Commercial buildings
 - Office/IT / ITES / Hospital / Hotel / Data Center
- Industrial building
 - Mfg industries, process load is involved

What is common in all building types?

- 1. Building envelope (Wall, roof and glass)
- 2. Lighting
- 3. HVAC
- 4. Equipment





How to measure energy efficiency in buildings?


- Energy Performance Index (EPI)
 - kWh/ sq m / year
- Whole building simulation approach
 - Energy cost/ energy consumption shall be lesser in Proposed case than the Base case
- Chiller / Cooling
 - kW/TR or Cool SFT/TR or Cool CFM/TR
- Lighting
 - Fificacy (lumen/W)

Climatic Zone	Average Annual hourly EPI AAhEPI (Wh/hr/sq m)	Star Rating
	52 - 46	1 Star
	46 - 40	2 Star
COMPOSITE	40 - 34	3 Star
	34 - 28	4 Star
BEE start r	atin Eg low 28	5 Star

nle of BEE Sta	r rating for Office Building les	SS than 50% Air Condition	An
ale of BEE Sta	r rating for Office Building les	ss than 50% Air Condition	
		Daugining in a second	Built-ur
			ount-uj
Clima	ate Zone - Composite		
	EPI (kwh/sqm/year)	Star Label	1
	80-70	1 Star	
	70-60	1 Star 2 Star	
		2 Star	
	70-60		

Energy Efficiency Measures

Envelope:

- Orientation
- Roof insulation
- High SRI coating
- Wall insulation
- Efficient glazing (lower SHGC)
- Sun film for glazing in the identified

Lighting:

- Install/ retrofitting lighting with LED
- Occupancy sensor
- Daylight sensor
- Voltage stabilizer
- Switching off idle running transformers
- Optimize the load on transformer

Operation of air-conditioners:

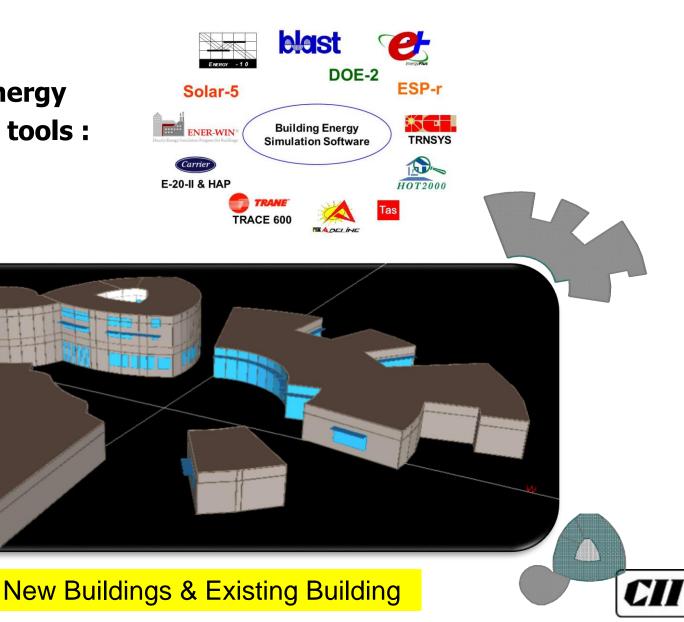
Adaptive thermostat conditions
Improved air movement in the
conditioned area
© Confede

HVAC:

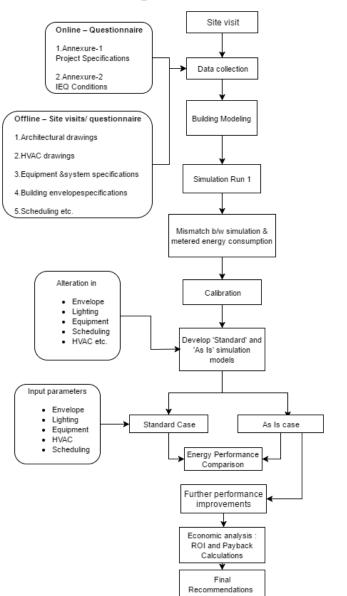
- Selection of energy efficient chillers (<0.55 kW/TR)
- Efficient Motor, Fan and Pumps
- Use of IE2-IE3 motors
- Optimize the loading of chillers
- Adiabatic cooling for air cooled condenser
- Thermostatic expansion valves-EEV
- Installation of online condenser cleaning system
- VFDs pumps and AHU fans
- Installation VFD cooling tower
- Avoid flow through idle running chillers
- Use of stand cooling towers
- Integration with geothermal based water condensers

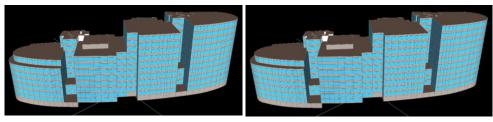
Equipment:

Use of star rated appliances

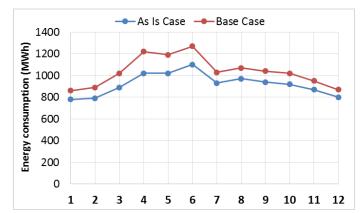


© Confederation of Indian Industry


Tools: Energy Efficiency in Buildings

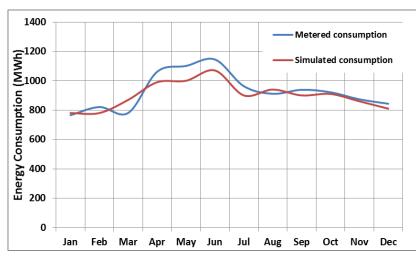


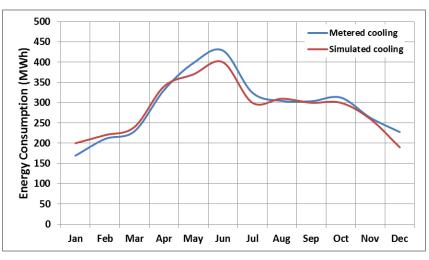
Indian Green Building Council



Energy Efficiency in Buildings

Base case and Proposed case simulation model

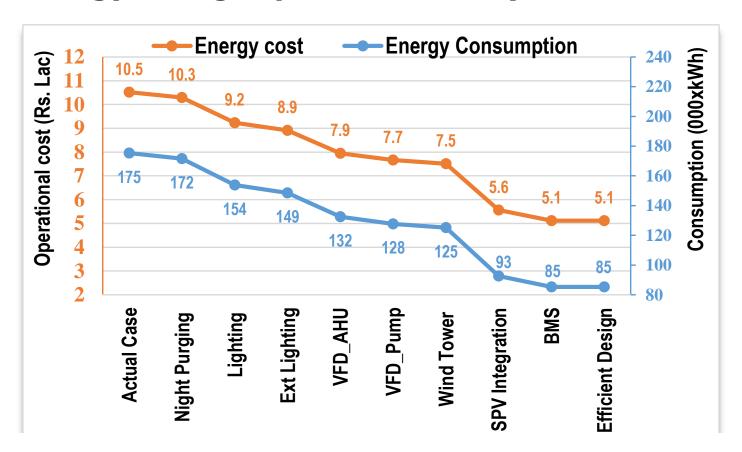



© Confederation of Indian Industry

Calibration: Existing buildings

- Calibration of simulation model
 - As per protocols of IPMVP, FEMP, ASHRAE 14P
- Building level
- Component / equipment level

Calibration - Building level


Calibration – space cooling

Energy Efficiency Measures and benefits

Energy savings: parametric analysis

0.82 kg of CO2 per kWh
Twice as much as that of the EU

Lighting Energy Efficiency

Retrofitting of existing fixtures by LED fixtures

	LPD (W/ft²)
Base case	1.04
Proposed case	0.49

Existing Lighting Fixtures

• 72 W/ fixture

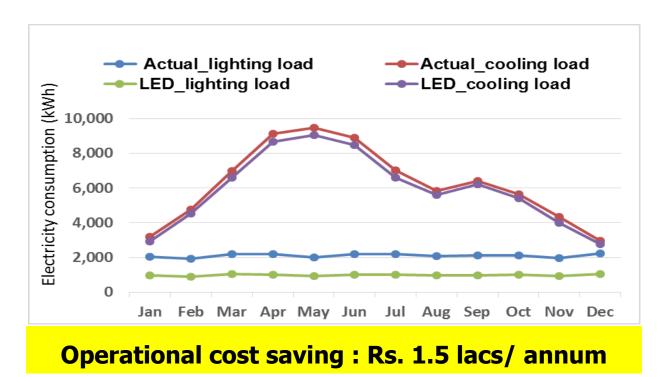
Efficacy: 60

No of fixtures: 211

Proposed Lighting Fixtures

• 38 W/ fixture

• Efficacy: 132


No of Fixtures: <100

© Confederation of Indian Industry

Retrofitting: Lighting Energy Efficiency

- Lighting energy saving : 52 %
- Cooling energy saving : 4 %
- Cost of fixtures: 5 lacs
- ❖ Payback : 3-4 years

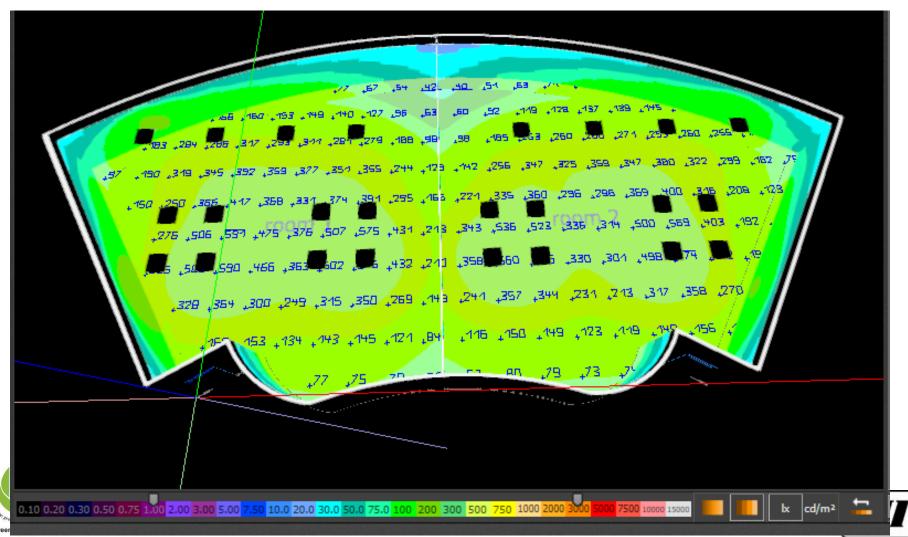
Lighting contour

Wing A

♦ Maximum lux: 617

❖Minimum lux: 34.6

❖Mean lux : 270

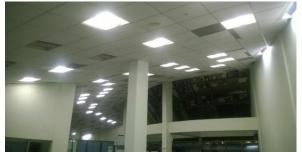

Overall mean 262

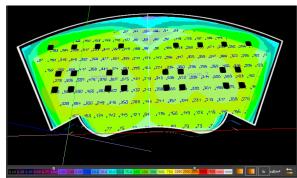
Wing B

♦ Maximum lux:601

♦ Minimum lux: 33.4

♦ Mean lux : 255


Optimise: No. of Lighting fixtures


Installed lighting fixtures

- Installed fixtures: 36 of 74 W
- Lighting load: 2,664 W

Recommended lighting fixtures

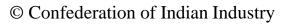
- No. of fixtures : 24 of 40 W
- Lighting load: 960 W
- ❖ Savings : 1704 W
- Reduction in lighting consumption
 - **63** %
- Annual savings
 - > 1363 KWh (operation 8 hrs x100 days)
 - GHG reduction: 1172 kg CO2

What needs to be done?

- Intellectual decision in selecting Energy Conservation Measure (ECM)
 - > LCA analysis
- Adoption of IGBC Green building rating system
 - Reduction in energy, water & resources
 - **☐** Thereby reduction in GHG emission
- Building energy simulation
 - Simulation for new buildings
 - Calibrated simulation for existing buildings
 - Enable better predictions of energy efficiency measures
 - Help in strategic decisions
 - Energy & GHG reduction
 - Approach towards net zero energy/ carbon buildings
 - Renewable energy integration
 Significant potential in existing building stock

Energy Efficiency and Environmental Benefits

Environmental Benefit Category	Benefits / Million Sq ft
CO ₂ reduction	12,000 Tons
Energy savings	15,000 MWh
Water savings	45,000 KL
Construction waste diverted from landfills	450 Tons



Hospital Dehradun IGBC Gold

GNRC Hospital Guwahati IGBC Gold

Indian Green Building Council (IGBC)
CII Sohrabji Godrej Green Business Centre
Survey No 64, HITEC City,
Hyderabad 500 084, India
Ph: +91 40 4418 5111, Ext. 211; Mob:+91-91775 77288

website: ww.igbc.in

Email shivraj.dhaka@cii.in

